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1 Overview

The Brazilian coastal zone presents diverse environments that evolved during the

Quaternary in response to climate and sea-level changes. These environments show an

interaction between different sediment supplies and a geologic heritage that dates back to

the breakup of South America and Africa (Dominguez, 2009; Souza-Filho et al., 2023).

Among this diversity of coastal features, five classes are mapped in the MapBiomas

Collection 9: Mangroves, Beaches, Dunes and Sand Spots, Aquaculture, Hypersaline tidal

flats, and Shallow Coral Reefs.

Table 1 shows the evolution of coastal features mapped in each collection and the

changes in its methodological aspects.

Table 1 - Overview of the Coastal MapBiomas Collections since their first version. In the method column, ‘EDT’ means
‘Empirical Decision Tree,’ RF refers to ‘Random Forest,’ and U-Net refers to a CNN-based Deep-Learning method.

Collection Range Method Classes Improvements
1.0 2008-2015 EDT No Coastal-Specific Mappings - First collection
2.0 2000-2016 EDT Mangroves, Beaches &

Dunes
- First two coastal classes

2.3 1985-2016 EDT Same as Collection 2.0 --
3.0 1985-2017 RF Mangroves, Beaches &

Dunes
- Random Forest
- Temporal stability is used to
generate a large training dataset
- Expanded to the entire Landsat
Temporal Series
- Better Quality Median
Composites

3.1 1985-2017 RF Same as Collection 3.0 --
4.0 1985-2018 RF and U-net Mangroves, Beaches, and

Dunes, Aquaculture
- Aquaculture/Salt-culture is added
as a coastal feature
- Improvements in temporal
consistency through additional
post-processing/ filters

4.1 1985-2018 RF and U-net Same as Collection 4.0 --
5.0 1985-2019 RF and U-net Mangroves, Beaches &

Dunes, Aquaculture,
Hypersaline Tidal Flats

- Hypersaline Tidal Flats are added
as a coastal feature (also known as
“Apicum”)

6.0 1985-2020 RF and U-net Mangroves, Beaches, Dunes
and Sand-Spots, Aquaculture,
Hypersaline Tidal Flats

- Sand Spots is now a feature that
integrates Beach and Dune, coastal
class

7.0 1985-2021 RF and U-net Same as Collection 6 - A new version of the U-net
classifier.

7.1 1985-2021 RF and U-net Same as Collection 7 --
8.0 1985-2022 RF and U-net Same as Collection 7.1 - Enhancements of the

Deep-Learning Algorithms
- Enhancements in temporal
consistency through additional
post-processing/ filters

9.0 1985-2023 RF and U-net Mangroves, Beaches, Dunes
and Sand-Spots, Aquaculture,

- Shallow Coral Reefs are added as
a coastal feature



Hypersaline Tidal Flats and
Shallow Coral Reefs

Compared to Collection 8, Collection 9 of the coastal zone mapping presents a new

class of coastal features, the Shallow Coral Reefs, here defined as , "an underwater

ecosystem characterized by reef-building corals, formed of colonies of coral polyps held

together by calcium carbonate (Ferreira and Maida, 2006). Most coral reefs are built from

stony corals, whose polyps cluster in groups. However, small methodological changes were

made. TTwo machine learning techniques were used: Mangrove, Beach, Dunes, &

Sand-Spot, and Shallow Coral Reefs are based on Random Forests, and Aquaculture and

Hypersaline Salt-Flats are U-net derived. In Collection 9, the “Apicum”/Salt Flat theme

gained its third generation of the U-Net learning model, which helped reduce its area

oscillation and commission and omission errors. The classification, validation and publication

workflow is described below in Figure 1.

Figure 1 - Workflow of Coastal Zone mapping, validation and publication. All data processing occurs within the Google Earth
Engine - GEE platform, except for the aquaculture/saline pattern and salt flat classification, which is dependent on the
TensorFlow library. In green are steps related to sampling design. In yellow are steps related to classification. In red is the
mapping accuracy evaluation stage.

2 Landsat image mosaics

The classification of the cross-cutting theme “Coastal Zone” used Landsat mosaics that

differed from the mosaics used to classify the natural vegetation of the Brazilian biomes. The

coastal mosaics were defined to preserve the maximum of the coastal zone land area while

capturing the minor possible cloud cover. These Landsat mosaics are the third generation of

the methodology developed specifically for these cross-cutting themes.
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2.1 Definition of the temporal period

Coastal areas are severely affected by atmospheric nebulosity, a condition that is

intensified by its proximity to the oceans and its tropical location. On the other hand, the

attempt to identify a time interval that covers only the driest season of the year, as an

alternative to reduce cloud persistence severely reduces the number of images available to

cover the entire coastal region. Thus, the annual cloud-free composites are generated,

ranging from the 1st of January to the 31st of December.

2.2 Mosaic Subsets

Since the Brazilian coastal zone (BCZ) is an extensive region, approximately 8,500

kilometers from Oiapoque to Chui (not taking reentrances into account), and affected by a

variety of atmospheric systems, of lesser or greater influence of nebulosity, the BCZ is here

divided into seven different sectors (Figure 2).

Figure 2 - The seven Brazilian Coastal Zone sectors used for mosaic subsets and images classification . Sector 1 - Amapa (AP),
coastal region of Amapa. Sector 2 - Marajo Island (MAR), coastal region of Marajo Island. Sector 3 - Para / Maranhao
(PAMA), a coastal sector of the states of Para and Maranhao. Piaui / Bahia (PIBA), is a coastal sector of the states of Piaui to
Bahia. Sector 5 - Espirito Santo / Sao Paulo (ESSP), a region that includes the states of Espirito and São Paulo. Sector 6 –
Parana/Laguna (PRLA), a coastal region that goes from the state of Parana to the municipality of Laguna in Santa Catarina,
and finally, Sector 7 (LARS), a region that ranges from Laguna to the state of Rio Grande do Sul.



2.3 Image selection

Since the MapBiomas Collection 2.3, substituting the "Simple Cloud Score" method
used in previous collections, the cloud/shadow removal script started to combine the
Landsat QA band values and the GEE median reducer. In Landsat Collection 2 Tier 1 data,
each pixel in the QA band contains unsigned integer values representing specific surface,
atmospheric, and sensor conditions that may affect the overall usefulness of a given pixel.
When effectively used, QA values can improve the data integrity by indicating which pixels
might be affected by instrument artifacts or subject to cloud contamination (USGS, 2017). In
conjunction, GEE can be instructed to pick the median pixel values in a stack of images. By
doing so, GEE rejects values that are too high (e.g., clouds) or too low (e.g., shadows) and
picks the median pixel value in each band over time. This operation has improved over
several collections, and it is possible to see the difference between two "cloud-free
composites" from different collections below (Figure 3).

Figure 3 - Left, MapBiomas Collection 2 “cloud-free composite.” Right, MapBiomas Collection 9 “cloud-free composite.”

2.4 Final quality

The mosaic quality is related to Landsat’s cloud-free availability during the image

selection period. However, from 1985 to March 1998, only the Landsat 5 satellite remained

operational. In this period, for the BCZ, the average number of images per year was ~500. In

the last decade, between 2008 and 2018, this figure tripled to ~1500 images per year, as

shown in Figure 4.



Figure 4 – Landsat image availability from 1985 to 2018. The bars show the distribution of Landsat images along the time
series. L5 stands for Landsat 5, L7 refers to Landsat 7, and L8 stands for Landsat 8.

3 Classification

The automatic classification of the Landsat mosaics was mainly performed on the

Google Earth Engine platform, based on the Random Forest classifier (Breiman, 2001). The

Hypersaline Salt-flat and the Aquaculture classes were deep-learning derived and thus

classified outside the GEE.

3.1 Classification scheme

Each class was classified separately as a binary variable. Therefore, five independent
classification processes were performed: 1) Mangrove, 2) Beaches and Dunes and
Sand-Spot, 3) Apicum, 4) Aquaculture, and 5) Shallow Coral Reefs. The classification process
was carried out considering only two possible classes for each pixel, the interest class
(Mangrove, Beaches, Dunes, Sand Spot, Salt flat, Aquaculture, and Shallow Coral Reef) or the
non-interest class (all the non-classes of each target of interest).

We have selected training points based on the availability of reference maps and the
previous MapBiomas Collection. The details of the parameters used in the image classifiers,
the reference maps used for each interest class, and the feature space produced for each
classification are presented in the following sections.

3.2 Reference Data

For each class, a dataset of reference data was used to guide the generation of training
samples. Table 2 shows the references used for each of the coastal zone classes.

Table 2 - Reference datasets to guide training samples of coastal zone classes in Collection 9.



Class References

Mangrove MapBiomas Collection 8, Giri et al., 2011, ICMBio
Mangrove Attlas (ICMBio, 2018), Global Mangrove
Watch (Bunting et al., 2018; Thomas et al., 2018), Diniz
et al., 2019, Panorama da Conservação dos Ecossistemas
Costeiros e Marinhos no Brasil (MMA, 2010), plus visual
inspection.

Aquaculture/Salt-Culture MapBiomas Collection 8, Atlas Dos Remanescentes
Florestais da Mata Atlântica (SOS Mata Atlântica, 2020),
Barbier and Cox, 2003; Guimarães et al., 2010; Prates,
Gonçalves and Rosa, 2010, Queiroz et al., 2013; Tenório
et al., 2015; Thomas et al., 2017, Diniz et al., 2021, São
José et al., 2022, plus visual inspection

Apicum/Salt flat MapBiomas Collection 8, Atlas Dos Remanescentes
Florestais da Mata Atlântica (SOS Mata Atlântica, 2020),
Prates, Gonçalves and Rosa, 2010, Panorama da
Conservação dos Ecossistemas Costeiros e Marinhos no
Brasil (MMA, 2010), plus visual inspection.

Beaches, Dunes and Sand Spots MapBiomas Collection 8, Atlas Dos Remanescentes
Florestais da Mata Atlântica (SOS Mata Atlântica, 2020),
Prates, Gonçalves and Rosa, 2010, Panorama da
Conservação dos Ecossistemas Costeiros e Marinhos no
Brasil (MMA, 2010), plus visual inspection.

Shallow Coral Reef Áreas Prioritárias para Conservação da Biodiversidade
(MMA), Panorama da Conservação dos Ecossistemas
Costeiros e Marinhos no Brasil (MMA, 2010), Atlas dos
Recifes de Corais nas Unidades de Conservação
Brasileiras (MMA), Allen Coral Reef Atlas, and
UNEP-WCMC Global Distribution of Coral Reefs.

3.3 Coastal Zone Feature Space

Tables 3 and 4 show all spectral indices and bands used for the BCZ classification.

Table 3 – Spectral Indices used for coastal zone classification.

Index Expression
Reducer

Reference

EVI2 2.5 * ((NIR - RED) / (NIR + 2.4*RED + 1))
Median and Standard

Deviation
Liu and Huete, 1995

NDVI (NIR - RED) / (NIR + RED)
Median and Standard

Deviation
Tucker, 1979

MNDWI (GREEN - SWIR1) / (GREEN + SWIR1)
Median and Standard

Deviation
Xu, 2006



NDSI (SWIR1 - NIR) / (SWIR1 + NIR)
Median and Standard

Deviation
Rogers and Kearney,
2004

MMRI Modular Mangrove Recognition Index
Median and Standard

Deviation
Diniz et al., 2019

GBNDVI The Green Blue NDVI
Median and Standard

Deviation
Wang et al., 2007

GRNDVI The Green Red NDVI
Median and Standard

Deviation
Wang et al., 2007

GARI
Green Atmospherically Resistant
Vegetation Index

Median and Standard
Deviation

Gitelson et al., 2003

CI Coloration Index
Median and Standard

Deviation
Escadafal et al., 1994

Table 4 - Table of bands used to classify coastal zone classes.

Variable Description Reducer

GREEN Landsat Green band median value
Median and Standard
Deviation

RED Landsat Red band median value
Median and Standard
Deviation

NIR Landsat NIR band median value
Median and Standard
Deviation

SWIR1 Landsat SWIR1 band median value
Median and Standard
Deviation

SWIR2 Landsat SWIR2 band median value
Median and Standard
Deviation

3.4 Classification algorithm, training samples, and parameters

When lacking reference maps that match the classes and/or year to be classified,

reference maps of the closest possible timeframe to the median composites were used.

When no reference map was available, then the classification results of the previous year

were used for subsequent training. Tables 5 and 6 show the Random Forest and U-net

parameters used to classify each one of the years.

Table 5 - Random Forest parameters used to classify each one of the years. Mangroves, Beaches, Dunes and Sand Spots and

Shallow Coral Reefs.

Parameter Value

Number of trees 100

Number of points 100000

Number of Variables 25 (Coastal Zone + Coastal Waters (Coral Reefs Area)

Classes 2 (binary classification)



Table 6—U-Net parameters used to classify each year. The U-Net-derived classes are the aquaculture and Salt flat classes.

Parameter Value

Classifier U-Net

Tile-Size 256 x 256 px

Optimizer SGD

Learning Rate 0.1

Momentum 0.9

Decay 1e-4

Samples 10000 (geometries)

Attributes Red, Green, Blue, Nir, Swir 1, Swir2, MNDWI, NDVI

Classes 2 (binary classification)

3.4.1 Mangroves

As in any supervised method, the Random Forest classifier needs to rely on a training

dataset. For mangrove cover recognition, the training data was obtained from MapBiomas

Collection 8, Giri et al., 2011, Atlas dos Manguezais do Brasil (ICMBio, 2018), Global

Mangrove Watch (Bunting et al., 2018; Thomas et al., 2018) and visual inspection (Figure 5).

The consolidated results of the mangrove distributions are available in Diniz et al., 2019.

Figure 5 - Global Mangrove Cover data was used as a mangrove mapping reference from 1999 to 2002.

3.4.2 Hypersaline Tidal Flat

Generally, the less frequently flooded area of a mangrove swamp, in the transition to

topographically elevated lands, is usually devoid of arboreal vegetation. In Brazil, this area is

called “Apicum”, or Hypersaline Tidal Flat. In the international scientific literature, this

transition zone is usually called salt flat or hypersaline tidal flat. As shown in Table 1, three

different reference maps were here used, the “Atlas dos Remanescentes Florestais da Mata



Atlântica” (SOS Mata Atlântica, 2020) from 2019/2020, covering the Mata Atlantica coastal

region and the “Carta de Sensibilidade Ambiental ao Óleo - Pará-Maranhão-Barreirinhas”

referent to 2017 and covering most of the Brazilian north coastal region and the data from

the MapBiomas Collection 8 (Figure 6).

Figure 6 – Apicum reference maps, the “Atlas Dos Remanescentes Florestais da Mata Atlântica” from 2019/2020, covering
the Forest Atlantic coastal region and the “Carta de Sensibilidade Ambiental ao Oleo -Para-Maranhão-Barreirinhas 2017”,
covering most of the Brazilian north coast region.

3.4.3 Beaches, Dunes and Sand Spots

Mapped in a single class, here “Beaches, Dunes and Sand Spots” refers to sandy

strands, bright white, where there is no predominance of vegetation. As shown in Table 1,

the training data for this land cover was obtained from MapBiomas Collection 8 and other

available reference data (Table 2; Figure 7).

Figure 7 - The training data for this land cover was obtained from MapBiomas Collection 8 and available reference,
as sThis”.

3.4.4 Aquaculture/Salt Culture



Compared to previous Mapbiomas Collections, Collection 8 aquaculture mapping

consolidated the use of the Deep-Learning model in replacement of the traditional Random

Forest Algorithm(Diniz et al., 2021) and Collection 9 has detected aquaculture beyond BCZ.

In this scenario, traditional machine learning algorithms use spectral-temporal data to

classify targets according to similarities of their spectral-temporal patterns (Breiman, 2001).

However, temporal and spectral properties might not be enough to discriminate

“super-similar” targets (targets that behave similarly in both spectral and temporal

domains). That is the case for most surface water targets, such as aquaculture ponds, rivers,

lakes, and open waters (Figure 8).

Unless water presents a high concentration of external compounds (minerals,

suspended sediments, algae and others), not much can be done to spectrally differentiate

between numerous surface water targets. On the other hand, the temporal domain may not

present much valid discriminatory data either. In Brazil, aquaculture is a traditional and

coastal-related economic activity. Thus, in 35 years of data, a diverse set of aquaculture

frequencies may exist (Barbier and Cox, 2003; Guimarães et al., 2010; Queiroz et al., 2013;

Tenório et al., 2015; Thomas et al., 2017). As a result, the temporal domain fails to

distinguish between well-consolidated aquaculture, main river channels, and open waters

once all these features present high temporal persistence throughout the entire time series.



Figure 8 – Spectral and temporal patterns of the aquaculture, rivers, and open waters classes. In the top-left corner, the
median cloud-free composite from Macau-RN, northeast of Brazil. The dark blue, green, and red markers represent
aquaculture, open water, and river samples. On the top right are the NMDWI values for each one of the samples. In the
bottom-left, JRC occurrence data. The occurrence frequency of each one of the samples is at the bottom right.

In cases like this, the “context domain” may be essential to distinguishing between

rivers, aquaculture, and open waters pixels. In the context analysis scenario, the U-Net:

Convolutional Networks (Abadi et al., 2015) have the advantage of predicting the class label

of each pixel by providing as input a local region (patches or chips) around that pixel. Such a

characteristic of working with “patches” or “chips” gives the U-Net the ability to access the

"context domain" of the image instead of using isolated pixels. The U-Net initial training was

guided by Collection 8 and other available reference data (Table 2).

In Collection 9, the municipalities with the most intense aquaculture production in each

state were studied (SÃO JOSÉ et. al, 2022), and areas beyond BCZ were identified as this

activity.

Figure 9 – Aquaculture areas in Rondônia, Collection 8, left, identified as River, Lake and Ocean and as Aquaculture in
Collection 9.

3.4.5 Shallow Coral Reef

Collection 9 was the first MapBiomas Collection to map shallow tropical reef extent,

coral reef structures which are visible in satellite imagery, as shown in Figure 10, and the



results are presented in a separate module within the platform.. This initiative is extremely

important, as coral reefs are the most biodiversity-dense ecosystems globally and the most

diverse in the sea (Adey, 2000). Yet, it is estimated that at least 25% of all marine species

depend on a healthy coral reef ecosystem for shelter, food, or reproduction during at least

one phase of their life (Nancy, 2010).

Figure 10 – Example of shallow coral reefs - visible in satellite imagery.

This is the first approach MapBiomas has made to monitor these ecosystems, but the

goal is to expand the mapping, indicating other important aspects regarding the health and

survival of this ecosystem. Other initiatives, such as Allen Coral Atlas (2024), have

successfully mapped coral areas especially vulnerable to bleaching, inspiring us to continue

studying ways to further our understanding of these ecosystems through remote sensing

data. Collection 9 focuses on the shallow coral reef extent, and future collections will focus

on alerting whether a given reef has crossed the environmental conditions for bleaching to

occur.

The most common technical challenges regarding the automatic delineation of shallow

coral reefs are interference from suspended sediments and the depth of the reef system. In

both cases, but through different mechanisms, the sun's light is prevented from reaching the

reef system and scattered back by the orbital optical sensor on board satellites.

4 Post-classification

Due to the pixel-based nature of the classification method and the very long temporal

series, a set of post-classification filters was applied. The post-classification process includes

the application of a gap-fill, a temporal, a spatial, and a frequency filter.



4.1 Gap-Fill filter

The chain starts by filling in possible no-data values. In a long time series of severely

cloud-affected regions, such as tropical coastal zones, it is expected that no-data values may

populate some of the resultant median composite pixels. In this filter, no-data values

(“gaps”) are theoretically not allowed and are replaced by the temporally nearest valid

classification. In this procedure, if no “future” valid position is available, the no-data value is

replaced by its previous valid class. Up to three prior years can be used to fill in persistent

no-data positions. Therefore, gaps should only exist if a given pixel has been permanently

classified as no-data throughout the entire temporal domain. A mask of years was built to

keep track of pixel temporal origins, as shown in Figure 11.

Figure 11 – Gap-filling mechanism. The following valid classification replaces existing no-data values. If no “future” valid

position is available, then the no-data value is replaced by its previous valid classification based on up to a maximum of

three (3) prior years. A mask of years was built to keep track of pixel temporal origins.

4.2 Temporal filter

After gap filling, a temporal filter was executed. The temporal filter uses sequential

classifications in a 3-year unidirectional moving window to identify temporally

non-permitted transitions. Based on a single generic rule (GR), the temporal filter inspects

the central position of three consecutive years (“ternary”). If the extremities of the ternary

are identical, but the center position is not, then the central pixel is reclassified to match its

temporal neighbor class, as shown in Table 6.

Table 6 - The temporal filter inspects the central position for three consecutive years, and in cases of identical extremities,

the center position is reclassified to match its neighbor. T1, T2, and T3 stand for positions one (1), two (2), and three (3),

respectively. GR means “generic rule”, while Mg and N-Mg represent mangrove and non-mangrove pixels.

Rule  Input (Year)  Output  
T1 T2 T3 T1 T2 T3

GR Mg N-Mg Mg Mg Mg Mg



GR N-Mg Mg N-Mg N-Mg N-Mg N-Mg

4.3 Spatial filter

Posteriorly, a spatial filter was applied. To avoid unwanted modifications to the edges

of the pixel groups (blobs), a spatial filter was built based on the "connectedPixelCount"

function. Native to the GEE platform, this function locates connected components

(neighbors) that share the same pixel value. Thus, only pixels that do not share connections

to a predefined number of identical neighbors are considered isolated, as shown in Figure

12. This filter needs at least ten connected pixels to reach the minimum connection value.

Consequently, the minimum mapping unit is directly affected by the spatial filter applied,

and it was defined as 10 pixels (~1 ha).

Figure 12 – The spatial filter removes pixels that do not share neighbors of identical value. The minimum connection value

was 10 pixels.

4.4 Frequency filter

The last step of the filter chain is the frequency filter, as shown in Figure 13. This filter

considers the occurrence frequency of a given class throughout the entire time series. Thus,

all class occurrences with less than 10% temporal persistence (3 years or fewer out of 37)

are filtered out and incorporated into the non-class binary. This mechanism contributes to

reducing the temporal oscillation of the classification signal, decreasing the number of false

positives, and preserving consolidated class pixels.



Figure 13 – Red, yellow and green represent mangrove pixels with high (23 or more years, y >=23), average (between 11 and

22 years, 11 <= y <= 22), and low (ten years or less, y < 11) occurrence frequencies, respectively. The top image shows

mangrove pixels before applying the frequency filter. The bottom image shows mangrove pixels after applying the frequency

filter. The black boxes are centered on areas significantly affected by the filter. All mangrove occurrences with less than 10%

temporal persistence (3 years in 33 possible years) were filtered out.

4.5 Integration with biomes and cross-cutting themes

After applying the filter chain, the cross-cutting themes and the biomes data are
integrated. This integration is guided by specific hierarchical prevalence rules (Table 7). As
the output of this step, a final land cover/land use map of Brazil for each year.

Coastal-related features such as Mangroves, Beaches, Dunes, and Aquaculture, as well
as anthropic transitions widely distributed throughout Brazil’s territory tend to occupy the
top positions of the prevalence rank, as seen below in Table 7.



Table 7- Prevalence rules for combining the output of digital classification with the cross-cutting themes in Collection 9.

Class Pixel Value Prevalence
Mining 30 1
Beach, Dune, and Sand Spot 23 2

Mangrove 5 3
Aquaculture/Salt-Culture 31 4
Hypersaline Tidal Flat 32 5
Urban Infrastructure 24 6
Sugar Cane 20 7
Soybean 39 8
Rice 40 9
Other Temporary Crop 41 10
Perennial Crop 36 11
Coffee 46 12
Citrus 47 13
Other Perennial Crop 48 14
Temporary Crop 19 15
Forest Plantation 9 16
Rocky Outcrop 29 17
Other Non-Vegetated Areas 25 18
River, Lake, and Ocean 33 19
Forest Formation 3 20
Savanna Formation 4 21
Wetland 11 22
Grassland Formation 12 23
Pasture 15 24
Mosaic of Uses 21 25



References

ABADI, M. et al. TensorFlow: Large-scale machine learning on heterogeneous systems. Methods in

Enzymology, 2015.

Adey, W. H. (2000). Coral Reef Ecosystems and Human Health: Biodiversity Counts! Ecosystem Health, 6(4),

227–236. doi:10.1046/j.1526-0992.2000.006004227.x

Allen Coral Atlas. Imagery, maps and monitoring of the world's tropical coral reefs, 2024.

doi.org/10.5281/zenodo.3833242

BARBIER, E. B.; COX, M. Does Economic Development Lead to Mangrove Loss? A Cross-Country Analysis.

Contemporary Economic Policy, v. 21, n. 4, p. 418–432, 1 out. 2003.

BREIMAN, L. Random Forests. Machine Learning, v. 45, n. 1, p. 5–32, 2001.

BUNTING, P. et al. The Global Mangrove Watch—A New 2010 Global Baseline of Mangrove Extent Remote

Sensing , 2018.

Diniz, C., Cortinhas, L., Nerino, G., Rodrigues, J., Sadeck, L., Adami, M., Souza-Filho, W.P., Brazilian Mangrove

Status: Three Decades of Satellite Data Analysis. Remote Sensing 11, http://dx.doi.org/10.3390/rs11070808.

2019.

Diniz, C., Cortinhas, L., Pinheiro, M.L., Sadeck, L., Fernandes Filho, A., Baumann, L.R.F., Adami, M., Souza-Filho,

P.W.M., 2021. A Large-Scale Deep-Learning Approach for Multi-Temporal Aqua and Salt-Culture Mapping

Remote Sensing, Remote Sensing, http://dx.doi.org/10.3390/rs13081415, 2021.

DOMINGUEZ, J. M. L. The Coastal Zone of Brazil. In: Geology and Geomorphology of Holocene Coastal Barriers

of Brazil. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. p. 17–51.

ESCADAFAL, R., BELGHIT, A. AND BEN-MOUSSA, A. (1994) Indices spectraux pour la télédétection de la

dégradation des milieux naturels en Tunisie aride. In: Guyot, G. réd., Actes du 6eme Symposium international

sur les mesures physiques et signatures en télédétection, Val d’Isère (France), 17-24 Janvier 1994, 253-259

FERREIRA, B.P.; MAIDA, M.. Monitoramento dos recifes de coral do Brasil. Brasília: MMA, 2006.
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