

MapBiomas Agua - VENEZUELA

Manual General

Documento de base teórica sobre algoritmos (ATBD)

Colección 2, Versión 1

Coordinador General:

Carlos Souza Jr

Coordinador Técnico:

Juliano Schirmbeck

Coordinador RAISG:

Cícero Augusto

Equipo Venezuela:

Tina Oliveira, Nelly Rivero, Yurmerys Bolaño, Juan Carlos Amilibia

Marzo 2025

Tabla de contenido

1 Introducción	3
1.1. Alcance y contenido del documento	3
1.2. Descripción general	3
1.3. Regionalización	4
1.4. Ciencia y aplicaciones clave	6
2 Información general y antecedentes	6
2.1. Contexto e información clave	7
2.2. Perspectiva histórica: mapas existentes e iniciativas cartográficas	7
3 Metodología	8
3.1. Imágenes Landsat	8
3.2. Algoritmo para la Detección de Superficies de Agua	9
3.2.1. Análisis de mezcla espectral	9
3.2.2. Clasificador subpíxel de superficie de agua (SWSC)	9
3.2.3. Ajustes fundamentados en el uso de máscaras	10
3.2.4. Obtención de datos mensuales de agua	11
3.2.5 Obtención de datos anuales de agua	12
3.2.6 Categorización de cuerpos de agua	12
4 Colección de mapas y análisis	13
4.1. Área de agua superficial	14
4.2. Transiciones de superficie de agua	15
4.3. Tendencia de superficie de agua	16
4.4 Categorías de cuerpos de agua	20
5 Consideraciones prácticas	20
6 Conclusiones finales y perspectivas	20
7 Referencias	21

1 Introducción

1.1. Alcance y contenido del documento

Mapbiomas Agua - Venezuela tiene por objetivo principal el mapeo de la dinámica del agua superficial en todo el territorio venezolano (figura 1), mensual y anualmente para el período 1996 - 2023. Además, identifica el tipo de cuerpos de agua de acuerdo a su origen (natural y antrópico) y el mapeo del agua en su forma sólida (nieves y hielo) en el país.

Los resultados de MapBiomas Agua para Venezuela se presentan en el módulo de agua que se aloja en la plataforma web MapBiomas Venezuela. Esta información se encuentra disponible en forma pública con la idea de que pueda ser usada por actores del sector público, académico, educativo, entre otros, en el ámbito nacional y colaborar en el mejor conocimiento de estos sistemas, su uso y gestión.

La finalidad de este Documento Base Teórico de Algoritmos (ATBD, por sus siglas en inglés) es proporcionar a los usuarios una guía detallada sobre los pasos metodológicos para generar los datos mensuales y anuales del agua superficial en Venezuela, así como el enfoque seguido para identificar el origen de sus cuerpos de agua. En el caso específico de los glaciares, los pasos metodológicos se encuentran descritos en Turpo et al. (2022).

Figura 1. Territorio venezolano.

1.2. Descripción general

La iniciativa MapBiomas Agua surge de un estudio previo realizado por Imazon y WWF-Brasil en el bioma amazónico brasileño, ampliado a la cuenca del Alto Paraguay, en el bioma Chaco (Souza et al. 2019). Este estudio mostró la posibilidad de mejorar la capacidad de la Iniciativa MapBiomas para detectar y monitorear la dinámica de agua superficial en todos los biomas brasileños. A partir de este contexto, el grupo de trabajo de MapBiomas Agua expandió el mismo enfoque y metodología a todo el territorio brasileño.

Para 2022, MapBiomas y la Red Amazónica de Información Socioambiental Georreferenciada (RAISG) establecen una alianza para adaptar y aplicar la metodología de MapBiomas Agua a todos los países amazónicos, con el objetivo de poder obtener y comprender la dinámica de agua en toda la región. La Colección 1 de esta iniciativa fue lanzada en septiembre de 2023.

La metodología para mapear y monitorear el agua superficial se basa en la clasificación a nivel de subpíxel de las imágenes de satélite de los sensores Landsat 5, 7 y 8. Esto permite analizar y comprender los cambios ocurridos en los últimos 28 años, asociados con la dinámica hidromorfológica natural de las diferentes áreas, los impactos antropogénicos y los posibles efectos de la aceleración del cambio climático. Además, todos los cuerpos de agua mapeados fueron clasificados de acuerdo a su origen en naturales y antrópicos. El procesamiento se llevó a cabo en el espacio Google Earth Engine y los resultados, transiciones y tendencias temporales se muestran en las plataformas interactivas Mapbiomas Venezuela y Mapbiomas Agua Venezuela, destinadas a usuarios finales.

El lanzamiento de la Colección 2 de Mapbiomas Agua - Venezuela ofrece información actualizada y confiable sobre los ecosistemas acuáticos y el recurso agua, lo que permite a la academia, el sector privado y el sector gubernamental contar con una herramienta para tomar decisiones en materia de protección, restauración y gestión de manera sostenible del agua y de los ecosistemas de agua continental.

1.3. Regionalización

Para la ejecución de los procesos de cálculo de superficie de agua se realizó una regionalización en todo el territorio de Venezuela, esto debido a la heterogeneidad y particularidad que caracteriza a la geografía de nuestro país, por lo que la metodología de clasificación de cuerpos de agua aplicada por MapBiomas Agua fue adaptada a las regiones específicas generadas. Estas regiones abarcan los biomas amazónicos, deltaicos, andinos, llaneros y caribeños (figura 2).

De igual manera, cada país amazónico estableció su propio criterio de regionalización para lograr una comprensión más profunda de la dinámica de los cuerpos de agua, atendiendo las particularidades de su territorio.

Trinidad y
Tobago

VENEZUELA

VENEZUELA

Regiones Agua

Regiones Agua

Antaracha Biqua

Ant

Figura 2. Regionalización de Venezuela

Tabla 1. Número de regiones de clasificación para Venezuela

Bioma	Cantidad de regiones
Amazonía Baja	1
Andes Altos	1
Andes Bajos	1
Andes Intermedios	1
Andes - Sierra de Perijá	1
Costa	3
Cuenca del Lago de Maracaibo	1
Delta	1
Islas	1
Orinoquia	6
Tepuyes	1
Total	18

Nota: Para el territorio conocido como Guayana Esequiba la regionalización siguió otra caracterización, ya que es una zona que se encuentra en disputa internacional y su

procesamiento ha sido realizado por personal técnico de IMAZON. No obstante, el 03 de abril del 2024 fue creado el estado Guayana Esequiba dentro de la legislación venezolana, por lo que se incluirán sus resultados en la plataforma de MapBiomas Venezuela

1.4. Ciencia y aplicaciones clave

El conjunto de datos sobre la dinámica de los cuerpos de agua superficiales ayuda a comprender los sistemas acuáticos y su interacción con otros componentes del medio ambiente, siendo crucial para la toma de decisiones, aportando en la gestión de los recursos hídricos con enfoque en el desarrollo sostenible.

La información sobre el mapeo de agua superficial puede ser aplicado en: la planificación territorial integrada, monitoreo de los objetivos de desarrollo sostenible, iniciativas de gestión sostenible de agua, monitoreo de las concesiones de agua/pequeñas represas, apreciación de la calidad de los ecosistemas de agua dulce, investigación y evaluación de los cambios de los cuerpos de agua y la relación con el cambio climático, entre otros.

2 Información general y antecedentes

2.1. Contexto e información clave

Las condiciones de muchos ecosistemas de agua dulce se han visto afectadas de forma negativa por las actividades humanas en las últimas décadas. Los cambios drásticos en el uso y la cobertura del suelo, la construcción de represas hidroeléctricas, la contaminación y el uso excesivo de los recursos hídricos para la producción de bienes y servicios han alterado la calidad y disponibilidad de agua en todo el mundo. Evidencia reciente muestra que las especies de agua dulce tienen tasas de extinción dos veces más altas que las terrestres. Además, las sequías extremas y las inundaciones relacionadas con el cambio climático han aumentado la presión sobre los depósitos de agua y los ecosistemas acuáticos.

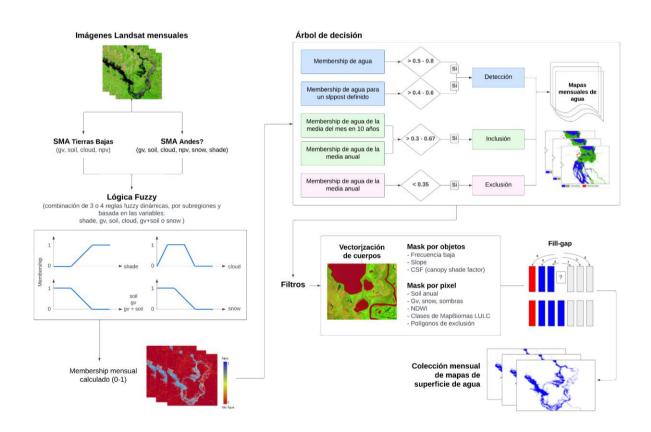
Este escenario tiende a empeorar aún más, dado el aumento de la población mundial y el uso de los recursos; a menos que se desarrollen estrategias integradas de gestión del agua será imposible alcanzar los objetivos globales de desarrollo sostenible. En esta perspectiva, evaluar de manera continua e histórica los cambios en la dinámica de la superficie de agua a escala continental es uno de los principales desafíos en la toma de decisiones sobre este preciado recurso (Oliveira y Souza, 2019).

Estos desafíos se aplican a todos los países amazónicos, donde existe la mayor proporción de agua per cápita del planeta, pero con una distribución y calidad heterogéneas. Esto genera la necesidad de tomar acciones y decisiones particulares tomando en consideración las diferentes características regionales, así como los efectos interconectados y acumulativos del uso de agua. Esto sólo será posible a través de datos e información detallada y consistente sobre la dinámica de la superficie de agua.

La novedosa metodología de mapeo de aguas superficiales adoptada por la iniciativa MapBiomas Agua ha permitido previamente identificar y cuantificar la dinámica de la superficie de agua dulce en los países amazónicos, especialmente en los humedales (Souza et al., 2019).

2.2. Perspectiva histórica: mapas existentes e iniciativas cartográficas

El uso de datos satelitales revolucionó la capacidad humana para mapear las aguas superficiales continentales y su dinámica. La combinación del acceso gratuito a los datos de Landsat con capacidades de computación en la nube permitió el lanzamiento de un conjunto de datos globales de varias décadas sobre aguas superficiales:


Global Surface Water (GSW) (Donchyts et al., 2016, Pekel et al., 2016). Esta iniciativa brinda información sobre la extensión y la dinámica de agua superficial en toda la superficie de la Tierra, basándose en un análisis de más de 30 años de imágenes Landsat a nivel de píxel, con varias aplicaciones científicas y de gestión. Sin embargo, el uso directo de GSW a nivel nacional sigue siendo un desafío por las limitaciones metodológicas en la detección de agua en llanuras aluviales, humedales y pequeñas masas de agua.

MapBiomas Agua busca superar algunas de estas limitaciones, adoptando el mismo enfoque general de combinar datos Landsat con capacidades de computación en la nube, pero agregando algunas innovaciones metodológicas para mejorar la detección y mapeo de aguas superficiales. En particular, la iniciativa adopta un clasificador a nivel de subpíxel de aguas superficiales (SWSC), aplicado inicialmente al bioma de la Amazonía brasileña (Souza et al., 2019). En las siguientes secciones se presentan detalles de esta metodología.

3 Metodología

La combinación de la serie histórica de imágenes Landsat, junto con las facilidades del procesamiento en la nube proporcionadas por la plataforma Google Earth Engine, permitió a la iniciativa MapBiomas Agua producir el primer conjunto de datos de agua superficial para todos los países amazónicos. La figura 3 muestra los principales pasos metodológicos que abarcan un clasificador de agua superficial a nivel de subpíxel (SWSC), árboles de decisión y procedimientos de post-clasificación para generar un conjunto de datos anuales y mensuales de agua superficial.

Figura 3. Proceso metodológico para producir los datos de superficie de agua, 1996 - 2023.

3.1. Imágenes Landsat

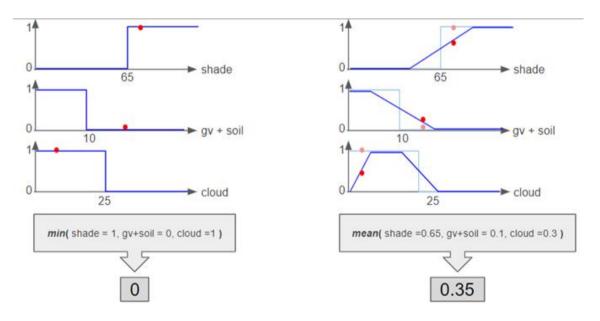
El proyecto utilizó imágenes del archivo de datos Landsat (LDA, por sus siglas en inglés) disponible en la plataforma Google Earth Engine, incluyendo imágenes de los sensores Landsat Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+) y Operational Land Imager (OLI), a bordo de los satélites Landsat 5, Landsat 7 y Landsat 8, respectivamente. Con una resolución espacial de 30 metros por píxel, se utilizó la Colección 2 Nivel 1 de imágenes Landsat ortorectificadas a la superficie. Se utilizaron todas las escenas Landsat que cubren a los países amazónicos (n = 211 348) entre 1996 y 2023, filtrando a través de sus metadatos las escenas con una cobertura de nubes menor al 70 %.

3.2. Algoritmo para la Detección de Superficies de Agua

3.2.1. Análisis de mezcla espectral

El Análisis de Mezcla Espectral (SMA, por sus siglas en inglés) permite estimar la composición fraccional de píxeles puros (es decir, endmembers) de vegetación verde (GV), vegetación no fotosintética (NPV), suelo (Soil), nubes (Cloud), sombra (Shade) y nieve (Snow). La información a nivel de subpíxel obtenida con SMA es útil para caracterizar el agua superficial con mezcla de otros componentes, por ejemplo, suelo y vegetación, superando así la limitación de los clasificadores de píxeles completos, permitiendo el mapeo de humedales, llanuras aluviales, ríos estrechos y pequeños cuerpos de agua.

En la aplicación de este modelo de SMA se utiliza una librería genérica de endmembers para las imágenes Landsat que permite calcular el porcentaje de los componentes, basándose en el algoritmo de desmezcla espectral que se encuentra en la plataforma de Google Earth Engine, y se presentan dos casos:


i) En las regiones de Amazonía / tierras bajas se aplica en cada píxel el SMA utilizando cuatro endmembers para calcular las fracciones de GV, Soil, NPV y Cloud. Para la fracción de shade se utiliza la sombra fotométrica (reflectancia cero en todas las bandas) y se calcula mediante la sustracción de la suma de GV, Soil, Cloud y NPV a 1.

3.2.2. Clasificador subpíxel de superficie de agua (SWSC)

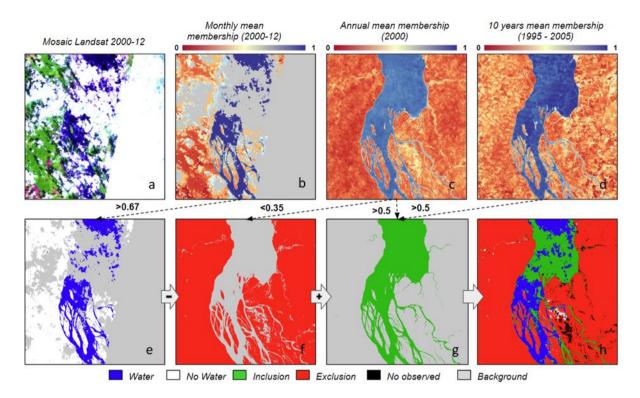
El algoritmo clasificador subpíxel de agua superficial (SWSC) original utiliza tres reglas jerárquicas de decisión binaria (ej. verdadero, falso) basadas en información fraccional de Shade, GV, Soil y Cloud. En primer lugar, debido a que el agua absorbe gran parte de la radiación electromagnética en las bandas visible, infrarrojo cercano e infrarrojo de onda corta de Landsat, el SWSC utiliza una imagen con fracción de Shade > 65 por ciento para clasificar la mayoría de los píxeles de Landsat como agua superficial. En segundo lugar, se utilizan las fracciones de GV y Soil combinadas (< 10 %) para cuantificar la mezcla de agua superficial con vegetación y suelo. Esta agua superficial mezclada se encuentra a lo largo de los bordes de cuerpos de agua, en ríos estrechos, en ecosistemas de llanuras aluviales y humedales.

Finalmente, se incluye la fracción de Cloud residual (< 25 %) para detectar agua superficial con alta carga de sedimentos. Esta fracción residual de Cloud se debe a la ambigüedad espectral del endmember de Cloudy Soil. De hecho, el modelo de fracción de Cloud residual se debe a la respuesta espectral del endmember de Soil en píxeles libres de nubes.

Una evaluación empírica de agua superficial mapeada con las reglas jerárquicas de decisión binaria descritas anteriormente reveló que el umbral aún excluye agua superficial. Por lo tanto, se definieron reglas de transición (figura 4) a lo largo de los umbrales fraccionarios utilizando un conjunto de funciones lineales. Como resultado, la decisión binaria SWSC original se transformó en tres lógicas difusas (reglas fuzzy) independientes, en las que se determina el grado de verdad/certeza (membership) de que un píxel Landsat es clasificado como agua. Luego se calcula el grado de verdad promedio para obtener un mapa continuo de memberships con valores que oscilan entre 0 y 1. En base a estos memberships, se clasifican los píxeles Landsat para producir capas de agua superficial mensuales.

Figura 4. Reglas binarias del clasificador subpíxel de agua superficial. El esquema de la izquierda muestra un ejemplo de agua superficial no detectada para un píxel con valores de fracción indicados por los puntos rojos (el valor de gv + soil está por encima del umbral > 10 para ser clasificado como agua). El ejemplo de la derecha aplica una lógica fuzzy lineal a la variable y el valor medio permite clasificar correctamente el píxel (punto rojo) como agua superficial.

3.2.3. Ajustes fundamentados en el uso de máscaras


■ Pendiente: Para producir los mapas mensuales de agua superficial, primero se generaron los mapas de memberships mensuales, calculando la mediana de los memberships de los píxeles entre las escenas Landsat disponibles para cada mes. Después, se clasificaron los píxeles como agua en base a umbrales definidos para el membership > 0.5 - 0.8 (el umbral varía en función de las regiones de clasificación), y en algunas regiones, además, se aplicó una máscara con valores de SLPPOST (pendiente estratificada) bajos para reducir el umbral (> 0.4 - 0.6) con el objetivo de ampliar la detección de ríos estrechos o agua con mucha mezcla de suelo y vegetación.

Así, se obtienen las series temporales mensuales de agua desde 1996 a 2023.

- <u>CSF:</u> Factor de Sombra de Dosel (CSD, por sus siglas en inglés: *Canopy Shade Factor*) es una estimación de la cobertura vegetal y su densidad, basada en la cantidad de luz solar que es interceptada por las copas de los árboles y otras plantas. Este índice en particular es utilizado para enmascarar algunos sitios particulares que clasificaban como agua dentro de áreas con vegetación. Este índice se usó en Venezuela como una máscara adicional para remover falsos positivos.
- NDWI: El Índice de Diferencia Normalizada de Agua (NDWI, por sus siglas en inglés: Normalized Difference Water Index) es un índice espectral ampliamente utilizado en el procesamiento de imágenes satelitales sobre todo en el mapeo de cuerpos de agua. Este índice aprovecha las diferencias en la reflectancia de la luz en las bandas del espectro electromagnético, especialmente en las bandas del verde y del infrarrojo cercano (NIR), para resaltar la presencia de agua. Para el caso de Venezuela (y el resto de los países amazónicos) se utilizaron imágenes Landsat con reflectancia de superficie.
- <u>Máscaras de cobertura</u>: A partir del producto de cobertura y uso del suelo de MapBiomas Venezuela (colección 2), se dispone de un conjunto de clases (como uso urbano, uso agropecuario, etc.) que sirven de insumo para correr un proceso de enmascaramiento y reducir espacialmente potenciales falsos positivos.

3.2.4. Obtención de datos mensuales de agua

Los mapas mensuales se complementaron con procedimientos para restaurar falsos negativos y remover falsos positivos, basados en métricas temporales (figura 5). Primero, se calculó la mediana del membership de agua para todo el año (es decir, la mediana intra anual), además de la mediana decenal de cada mes. Luego se aplicó un relleno de vacíos para reclasificar como agua aquellos píxeles que eventualmente fueron cubiertos por nubes o dentro de áreas donde no existían escenas Landsat durante un mes determinado, usando una combinación de dos reglas: probabilidad mediana dentro del año > 0.3 - 0.67 y la mediana decenal del mes correspondiente > 0.3 - 0.67, donde el umbral varía en función de las regiones de clasificación. Por último, la presencia de sombras de nubes u otros objetos oscuros en la escena Landsat también puede producir falsos positivos en la clasificación de agua, por lo que se aplicó un filtro de remoción para reclasificar como no agua aquellos píxeles con un membership mensual mediano < 0,35.

Figura 5. a: Mosaico Landsat mensual; b: Membership mediana mensual de SWSC; c: Membership mediana mensual anual de SWSC; d: Membership mediana mensual decenal de SWSC; e: Clasificación mensual de agua superficial; f: Agua superficial total por decenio; g: Área que probablemente sea agua superficial basado en los umbrales de c y d. h: Mapa final de agua superficial del mes, con inclusión y remoción correspondiente.

3.2.5 Obtención de datos anuales de agua

Los mapas anuales de agua superficial incluyen una identificación entre agua permanente y estacional. Esta clasificación se basa en umbrales correspondientes al número de meses en que un píxel se clasifica como agua. Para el primer caso se considera una frecuencia ≥ 6 meses, y para el segundo, una frecuencia entre 1 a 5 meses. La definición del umbral de agua permanente se basa en la existencia de una temporada seca y otra húmeda, en gran parte de las regiones, de tal manera que se abarcan todos los cuerpos de agua permanentes que son naturalmente más dinámicos.

3.2.6 Categorización de cuerpos de agua

El mapeo de la superficie del agua se utilizó en un esquema de clasificación de cuerpos de agua según su uso, con las siguientes clases (figura 6): 1. Natural, 2. Antrópico, 3. Hidroeléctricas, 4. Agua de minería, 5. Acuicultura. También se incluyó una sexta clase denominada "Falsos positivos", como un subproducto de la clasificación para eliminar algunos casos de falsos positivos no deseados que persistían en las colecciones mensuales y anuales de superficie de agua.

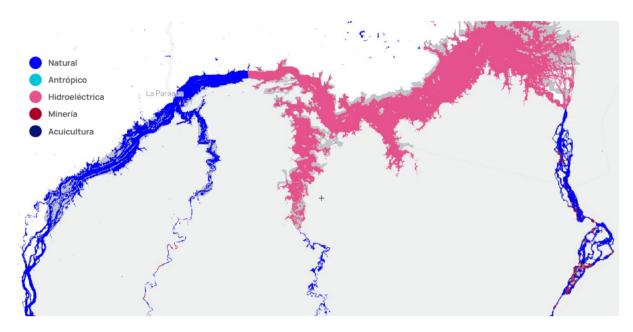
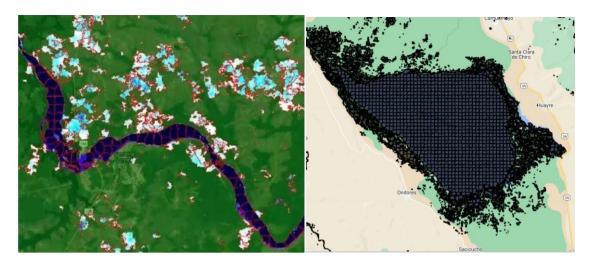



Figura 6. Ejemplos de categorías de cuerpos de agua, estado Bolívar, Venezuela


La clasificación de los cuerpos de agua incluyó los siguientes pasos:

1. Delimitación vectorial de objetos

La delimitación vectorial de objetos se denominó vectorización anual, ya que corresponde al proceso de convertir los mapas de frecuencia mensual de la superficie del agua (datos raster) para cada año en polígonos regulares (datos vectoriales) dentro de la delimitación espacial de los cuerpos de agua.

Este procedimiento se realizó con una herramienta de segmentación, en la que un cuerpo de agua particular pudo haberse convertido en uno o más polígonos. La función SNIC disponible en Google Earth Engine se utilizó para generar segmentos pequeños y relativamente regulares. La figura 8 muestra algunos ejemplos de la segmentación basada en datos de frecuencia mensual para un año determinado.

Figura 7. Ejemplos del proceso de segmentación que convierte datos raster (frecuencia mensual dentro de cada año) en una malla de vectores regulares.

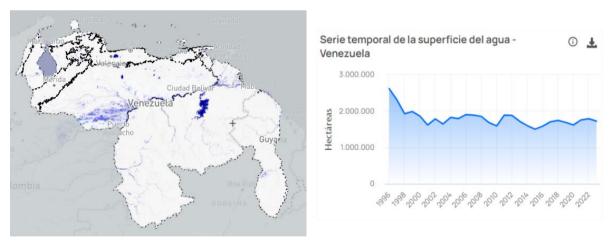
2. Asignación de propiedades a objetos

Después de generar los objetos para cada año, se asignó a cada uno de estos objetos un dataset de características con nuevas propiedades para su posterior uso en la clasificación. Estas propiedades incluyen información relacionada con la morfología del objeto, la geomorfología e información cualitativa de otros estudios sobre clasificación de cuerpos de agua y mapeo de cobertura y uso de la tierra. Las siguientes variables se asociaron a cada objeto: área, perímetro, relación área/perímetro, compacidad, redondez, grado de elongación, relación Laenge-Breite, convexidad, extensión máxima, número de vecinos, número de vecinos dentro de un buffer de 50 metros, clasificación ANA - antrópica, clasificación ANA - hidroeléctrica, clases de cobertura y uso del suelo MapBiomas (urbano, minería, bosque, clase no forestal, pasto), valor máximo SRTM y media de la frecuencia total.

3. Clasificación de objetos basada en muestras de entrenamiento

La clasificación de los cuerpos de agua se realizó utilizando el algoritmo Random Forest. Las muestras de entrenamiento se recolectaron en los diferentes biomas para cada una de las cinco clases. Las muestras se recolectaron utilizando un conjunto de cuadrículas previamente dibujadas de cada bioma, cubriendo diferentes años de la serie temporal.

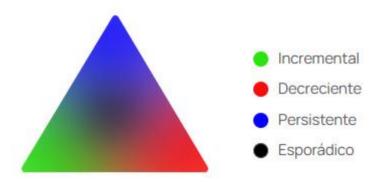
4. Filtro temporal

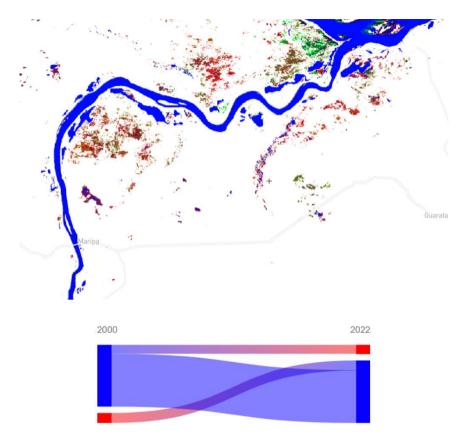

Después de la clasificación, los resultados se sometieron a una rutina de postclasificación aplicando un filtro temporal. La lógica del filtro temporal fue eliminar las transiciones improbables entre clases del mismo segmento a lo largo de la serie temporal. Por último, todos los polígonos clasificados como falsos positivos dentro de cada año se reconvirtieron a formato raster y se utilizaron para filtrar el conjunto de datos de superficie de agua anual y mensual, eliminando los falsos positivos restantes.

4 Colección de mapas y análisis

Los resultados de la colección 2 del mapeo de superficie de agua líquida y sólida se encuentra disponible en la plataforma web pública: https://plataforma.venezuela.mapbiomas.org/agua donde se incluyen cuatro coberturas de datos: superficie de agua, transiciones, tendencias y cuerpos de agua (clasificación de cuerpos de agua según su tipo de uso).

4.1. Área de agua superficial


La capa corresponde a los datos de la cobertura anual de agua superficial. Los datos presentan superficie de agua mapeada considerando los diferentes rangos temporales dentro del intervalo de 1996 al 2023, incluyendo su respectiva frecuencia relativa. La totalidad de la superficie mapeada corresponde a las 26 entidades federales que comprenden el territorio venezolano. Los datos también están disponibles enmarcados en diferentes límites territoriales como: bioma, cuenca Nivel 1 PNRH, estados, municipios, Territorio Indígena y Área Protegida. El usuario puede seleccionar la forma de agrupación territorial que desee, así como los rangos temporales de su interés, logrando que el mapa, gráficos y estadísticas se actualicen automáticamente a sus preferencias (figura 7).


Figura 7. Ejemplo de visualización de los datos de la capa de superficie de agua (mapa y gráfico) en la plataforma de MapBiomas Agua Venezuela.

4.2. Transiciones de superficie de agua

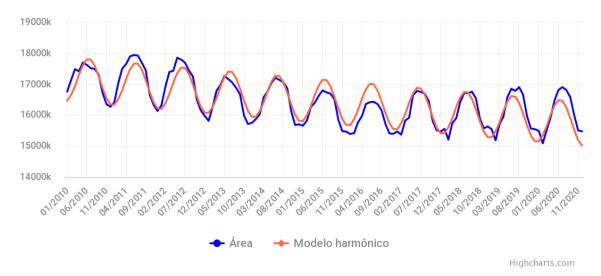
Esta capa representa la superficie de agua que ha disminuido, incrementado, se ha mantenido persistente o se presenta de manera esporádica a lo largo de los 28 años. Fue posible identificar estas áreas utilizando el número total de píxeles clasificados como agua en toda la serie anual (i.e., 28 años). Se elaboró una composición de color en RGB para facilitar la visualización e identificación de estas categorías (figura 8). Primero, para caracterizar la persistencia se asignó el color azul al total de años clasificados como superficie de agua. Segundo, se seleccionó el número de años desde el principio de la serie temporal hasta la aparición de la primera clasificación de agua y se le asignó el color verde para caracterizar el incremento. Finalmente, se seleccionó el número de años desde la última observación de superficie de agua hasta el final de la serie temporal, para indicar la disminución de la superficie de agua en color rojo. De este modo, los cuerpos de agua permanentes aparecerán predominantemente azules, las superficies de agua temporales aparecerán negras si éstas ocurrieron de manera esporádica, la pérdida de superficie de agua en color rojo y superficies nuevas, en verde (figura 9).

Figura 8. Dinámica de superficie de agua RGB. El color azul indica persistencia, ya que el total de años fueron clasificados como superficie de agua; verde, incrementó (los años desde el principio de la serie temporal hasta la primera clasificación); y rojo disminución. Los colores negros y oscuros indican superficies de agua esporádicas o no permanentes.

Figura 9. Ejemplo de transición de superficie de agua al sur del río Orinoco, estado Bolívar. El color verde en el mapa indica el incremento de agua en los últimos años debido a la dinámica natural del flujo de agua y cómo este ha cambiado el curso del río; en rojo, se observa dónde ha disminuido el agua debido al mismo fenómeno. El gráfico (azul y rojo) indica las transiciones entre los años seleccionados, de acuerdo al área de superficie mapeada.

4.3. Tendencia de superficie de agua

El análisis de la tendencia de superficie de agua fue realizado utilizando la base de datos de agua mensual.


4.3.1 Ajuste de un modelo armónico

Para describir y probar cambios en los patrones de variación estacional, relacionados con cambios de fase, amplitud y tasa de variación, buscando patrones estacionales y posibles tendencias en referencia a los datos mensuales del mapeo de la superficie de agua para la serie temporal 1985-2023, se utilizó el modelo armónico descrito por Shumway y Stoffer (2006). (Figura 10).

Siendo $x_1, x_2, ..., x_n$ un conjunto de n datos donde x_t representa el valor del área variable de la superficie de agua en la serie de tiempo, para $t < [1,n] \in \aleph$, en el dato n = 432 (meses). Se ha calculado el valor armónico para cada elemento de la serie siguiendo la siguiente fórmula:

$$x_1 = \beta_0 + \beta_1^* t + \beta_2^* \cos(2\pi^* t) + \beta_3^* \sin(2\pi^* t)$$

Los coeficientes estimados β_0 , β_1 , β_2 , β_3 fueron calculados usando el método de mínimos cuadrados ordinarios. (Shumway y Stoffer, 2006).

Figura 10. Ejemplo de ajuste de serie armónica a los resultados de superficie de agua mapeada mensualmente. La línea azul corresponde a la superficie de agua mapeada, la línea roja indica el ajuste del modelo armónico.

4.3.2 Diferencias entre el modelo armónico y los datos observados

Para detectar el comportamiento de aumento o disminución a lo largo de la serie de tiempo, se ha calculado la diferencia entre el modelo armónico y la superficie de agua mapeada. Este análisis pretende señalar con mayor claridad qué periodos mensuales presentaron salidas más intensas según lo esperado por el modelo.

Figura 11. Ejemplo de las diferencias entre el modelo ajustado y los datos observados. Los puntos y barras verdes indican valores de aumento, mientras que los puntos y barras rojas indican valores de disminución en relación a lo esperado por el modelo armónico.

4.3.3 Tendencias temporales

Se buscaron tendencias de aumento, disminución o mantenimiento en la superficie de agua mapeada a lo largo de la serie temporal de 1985-2023. La prueba se realizó utilizando la prueba estacional de Mann Kendall (MK test), que se utiliza para analizar los datos recopilados a lo largo del tiempo en busca de tendencias crecientes o decrecientes con comportamiento monótono en los valores del eje Y (figura 12). No es paramétrico, por lo que no es necesario que los datos cumplan con los supuestos de normalidad, que analiza los datos en busca de tendencias monótonas en los datos estacionales (Hirsch *et al.*, 1982; Hirsch *et al.*, 1984; Gilbert, 1987; Helsel y Hirsch, 1995, Morell y Fried, 2009).

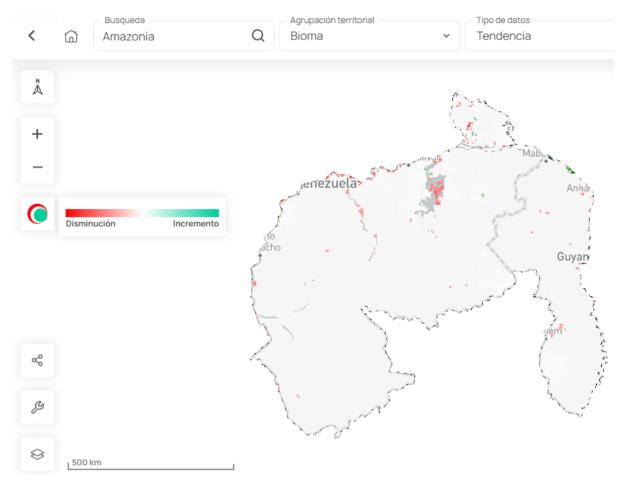
Para realizar la prueba sobre la serie temporal, los valores se consideran en una serie temporal ordenada. Cada valor de la serie se compara con el resto de los elementos posteriores de la serie. En la estadística de Kendall se considera como 0, cuando S = 0. Si el valor de S para todo el conjunto de elementos es mayor que 0, significa que la tendencia de los datos de la serie está disminuyendo. De lo contrario, significa que la serie está aumentando.

Se consideraron los siguientes pasos para calcular la estadística de Mann-Kendall:

Siendo $x_1, x_2,, x_n$ un conjunto de n datos donde x_j representa el valor de la variable tiempo j para todo $j < [1,n] \in \aleph$, entonces se calcula:

$$S = \sum_{k=1}^{n-1} \sum_{j=k+1}^{n} sign(x_j - x_k)$$

la función es:


$$sign(x_j - x_k) = 1$$
 $se x_j - x_k > 0$
 $sign(x_j - x_k) = 1$ $se x_j - x_k = 0$
 $sign(x_j - x_k) = -1$ $se x_j - x_k < 0$

Cada valor añadido a S significa un aumento o una disminución del valor respecto del siguiente de la serie.

En las series temporales de datos de área para recolectar mapas de cuerpos de agua, fue necesario considerar el cálculo de Kendall para una serie con comportamiento estacional. La serie de superficies de cuerpos de agua corresponde a una serie temporal de 12 meses a lo largo de 28 años. Dada esta estructura para el cálculo de la estadística S, los datos se dividieron en 12 subconjuntos, donde el primer subconjunto corresponde a todos los valores correspondientes al mes de enero de la serie, el segundo a todos los valores correspondientes a febrero de la serie, y así sucesivamente, hasta diciembre. Entonces el valor de S será la suma de todos los S_i donde J = [1.12] (Helsel y Hirsch, 1995).

$$S = \sum_{j=1}^{12} S_j$$

El valor de Kendall para cada mes se calcula como se describe anteriormente.

Figura 12. Ejemplo de resultados de cálculo de tendencias en la Amazonia venezolana utilizando la prueba estacional de Mann Kendall. Los datos en rojo indican una disminución, los datos en verde un aumento y los datos en blanco, estabilidad. Sólo se presentan datos con valores significativos.

5 Consideraciones prácticas

Generada la primera versión del producto, se considera como un punto de partida para futuras mejoras y correcciones ante cualquier observación. Todos los datos están disponibles públicamente, además se espera que todos los usuarios puedan revisar, identificar los aciertos, la necesidad de correcciones y sugerencias para que este producto pueda continuar con el proceso continuo de mejora en las siguientes versiones.

Los usuarios de este conjunto de datos deberán tener en cuenta que el uso y aplicación de la base de datos cuantitativos presentados siempre deben confrontarse con los resultados de precisión para una mejor comprensión del grado de incertidumbre existente en los datos, confirmando o no su aceptación.

6 Conclusiones finales y perspectivas

La presente colección se consolida como un producto importante de cartografía correspondiente a la superficie de agua para todo el territorio de los países amazónicos, por su aporte a la comprensión de la dinámica espacial y temporal. Dentro de los objetivos planteados por la iniciativa MapBiomas Agua - RAISG, se logra el resultado esperado sobre la primera cartografía asociada a la superficie de agua consolidada en la Colección 2, donde dicho resultado permite conocer los patrones de cambios, observar ciclos entre incremento o disminución, estimar ganancias o pérdidas, asociar los cambios por interacciones humanas para comprender mejor sus consecuencias.

7 Referencias

Donchyts, G.; Baart, F.; Winsemius, H.; Gorelick, N.; Kwadijk, J.; van de Giesen, N. Earth's surface water change over the past 30 years. Nat. Clim. Chang. 2016, 6, 810–813.3

Gilbert, R.O. 1987. Statistical Methods for Environmental Pollution Monitoring. Wiley, NY.

Helsel, D.R. and R.M. Hirsch. 1995. Statistical Methods in Water Resources. Elsevier, NY, 338-340.

Hirsch, R.M. and J.R. Slack. 1984. A nonparametric trend test for seasonal data with serial dependence. Water Resources Research 20(6):727-732.

Hirsch, R.M., J.R. Slack and R.A. Smith. 1982. Techniques of Trend Analysis for Monthly Water Quality Data. Water Resources Research 18(1):107-121.

Morell and Fried 2009. On Nonparametric Tests for Trend Detection in Seasonal Time Series

Oliveira, B.C.; Souza, C.M. 2019. A novel approach to monitor water in Brazil with satellite images - a concept note. WWF Report 2019.

Pekel, J.-F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422.

Souza, C.M., Kirchhoff, F.T., Oliveira, B.C., Ribeiro, J.G. & Sales, M.H. (2019). Long-Term Annual Surface Water Change in the Brazilian Amazon Biome: Potential Links with Deforestation, Infrastructure Development and Climate Change. Water, 11, 566.